

Euclid and WFIRST AFTA

Jason Rhodes (JPL) Nov. 19, 2012

WFIRST SDT

Euclid

Mapping the geometry of the Dark Universe

2004: Dark Universe Mission proposed as a Theme

to ESA's Cosmic Vision programme

Oct 2007: DUNE and SPACE jointly selected for an

ESA Assessment Phase

April 2010: Formation of single Euclid Consortium

2010-2011: Definition phase

July 2011: Final Euclid Proposal- Red Book

Oct 2011: Cosmic Vision Approval of Euclid

June 2012: Official selection of Euclid and start of

implementation

Fall 2012: NASA Joins, selects 40 US participants

for funding

2012-2020: Implementation phase

2020: launch

2020-2026 :science operations

Euclid goals

Understand the nature of Dark Energy and Dark Matter by:

- •Measuring the DE equation of state parameters w_0 and w_a to a precision of 2% and 10%, respectively, using both expansion history and structure growth.
- •Measuring the growth factor exponent γ with a precision of 2%, enabling to distinguish General Relativity from the modified-gravity theories
- •Testing the Cold Dark Matter paradigm for structure formation, and measure the sum of the neutrino masses to a precision better than 0.04eV when combined with Planck.
- •Improving by a factor of 20 the determination of the initial condition parameters compared to Planck alone.

Responsive to **some** of the *scientific* goals outlined in NWNH Panel Reports:

- How did the universe begin?
- Why is the universe accelerating?
- What is dark matter?
- What are the properties of neutrinos?

Euclid concept

- Optimized for two complementary cosmological probes:
 - —Weak Gravitational Lensing
 - —Galaxy Clustering (Baryonic Acoustic Oscillations & Redshift Space Distortions)

Additional probes: clusters, ISW

15,000 square degree survey

- —Imaging (WL):
 - High precision visible imaging at (shapes)
 - NIR Photometry (photo-z)
 - Near Infrared Spectroscopy (Galaxy Clustering)
- SN, exoplanet microlensing not part of science goals now
 - —Possible, but not planned

Euclid Mission Baseline

Mission elements:

- L2 Orbit
- 6.25 yr primary mission
- Telescope: three mirror astigmat (TMA) with 1.2 m primary
- Instruments:
- VIS: Visible imaging channel: 0.5 deg², 0.10" pixels, 0.16" PSF FWHM, very broad band r+i+z (0.5-0.9mu), 36 CCD detectors, galaxy shapes
- NISP: NIR channel: 0.5 deg²,
 - 16 HgCdTe detectors, 1-2mu:
 - Photometry: 0.3" pixels, 3 bands Y,J,H, photo-z's
 - Spectroscopy: slitless, R=500, redshifts

From NASA

Euclid Payload concepts

Thales Alenia Space (240K telescope)

Astrium (150K telescope)

Euclid Mission

\$ 100 H 2000		SURV	in 6.25 y	rs	
	Area (deg2):	Description			r.
Wide Survey	15,000 deg	Step and stare with 4 dither pointings per step.			
Deep Survey	40 deg ²	In at least 2 parches of 5 to dep N+S? Obs strategy			
20010000		PAYLO		THE RESIDENCE	
Telescope	7,9351	1.2 m Korsch, 3 mirror anastigmat, F=24.5 m			
Instrument	V2S	NISP			
Field-of-View	0.787×0.709 deg	0.763=0.722 deg			
Capability	Visual Imaging	NiR Imaging Photometry		NIR Spectroscopy	
Wavelength range	550-900 nm	Y (920- 1146am).	J (3146-1372 nm)	1f (1372- 2000est)	1100-2000 nm
Sensitivity	Shapes + Photo	24 mag 5e point source	24 mag 5e point source	24 mag 5e point source	1 10
Detector Technology	36 arrays 4k:-4k CCD	16 arrays 2k × 2k NIR sensitive HgCdTe detectors			
Pixel Size Spectral resolution	0.1 arcsec	0.3 arcsec		0.3 arcsec R=250	
	TBD	SN and/o	r μ-lens surve	eys	

Ref: Euclid RB arXiv:1110.3193

• October 4, 2011

: Euclid selected as ESA M2 Cosmic Vision

• Spring 2012

: Completion of the Definition phase (A/B1)

• June 2012

: Adoption for the Implem. Phase (B2/C/D/E1)

•November 2012

: Industrial Partner Selected

• Q1 2014

: Instrument PDR

• Q3/Q4 2017

: Flight Model delivery

• Q2 2020 : Launch (L)

• <(L+6 months)

: Start Routine Phase

• L+7 yrs

: End of Nominal Mission

• L+9 yrs

: End of Active Archive Phase

Euclid Science Reach

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	7.	m/eV	f _{NL}	w_p	w _e	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current (09/2011)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>50	>300

Euclid addresses many aspects of the current cosmological paradigm

From Euclid Red Book:

sci.esa.int/science-e/www/object/index.cfm?fobjectid=48983

Euclid, WFIRST and NWNH

- Euclid alone can *NOT* meet all the goals of the decadal survey, and WFIRST will likely be limited by multiple scientific goals
 - Observing time limited in ~ 5 years
 - e.g., WFIRST DRM1/2 do not cover the WL area we would like or Astro2010 recommended
- Disparate goals require a wide range of capabilities and sufficient survey time
 - Properly complementary Euclid and WFIRST can provide this
 - Together the missions will maximize progress on NWNH goals
- Euclid primary mission also allows going beyond the *observational* goals of WFIRST to other *scientific* goals outlined in NWNH Panel Reports: Euclid Goals (Red Book):
 - How did the universe begin?
 - Why is the universe accelerating?
 - What is dark matter?
 - What are the properties of neutrinos?

- 1. DE FoM
- 2. Growth/GR
- 3. DM/neutrinos
- 4. Inflation

Euclid and WFIRST

- Euclid and WFIRST should be largely complementary in capability
 - —Some overlap in capability is acceptable, but as envisioned in NWNH, WFIRST will have *unique* capabilities not duplicated by Euclid or LSST
 - —Independent, complementary approaches towards difficult and ambitious science is desirable, even necessary, to maximize progress
 - —~10 years of observing time is needed to properly address NWNH goals
 - —Together Euclid and WFIRST can advance the observational **AND** the theoretical goals of NWNH
- Slightly phased (2020/~2025) approach may prove beneficial
 - —WFIRST can benefit from early Euclid observations and attack most compelling/difficult questions
 - —tune WFIRST observing strategies based on early data from Euclid
 - —Longer baseline enhances WFIRST (μlensing)
 - —High quality WFIRST data may enhance Euclid science return (WL)

Euclid and WFIRST

- In studying DE, FoM does not tell the whole story
 - —Multiple probes from multiple observatories with different possible systematics are necessary
 - —If Euclid is systematics-limited in WL, higher quality WFIRST data may leverage the survey
- Systematics are the key for DE
 - —This is a primary reason we go to space
 - —WFIRST and Euclid will be sensitive to different systematics, with WFIRST having the advantage
 - —All WFIRST designs make multiply redundant WL shape measurements which Euclid will not do

Ways AFTA is less Complementary than DRM1/2

- Wavelength range AFTA is unlikely to be able to get to $2.4\mu m$
 - —Will have a wavelength cutoff closer to Euclid's
 - —Lower redshift range for BAO, SN
 - —Less wavelength coverage for ancillary science

- AFTA is an obscured optical design
 - —Will not have the PSF simplicity of an unobscured design
 - —More difficult to reach WL systematics goals
 - —Won't see the 'full benefit' of going to 2.4m diameter in terms of PSF size and throughput

Euclid/NEW synergy for dark sector

- Higher throughput of a 2.4m mirror makes SN survey at z>1.3 possible
 - Could use whatever SN Euclid does (if any) as a starting point
- Euclid will NOT do a SN survey competitive with what WFIRST could do

- Higher throughput means better sampling for BAO
 - Could still go to somewhat higher z than Euclid
- And IFU would significantly increase complemtarity

Summary: Extragalactic Surveys

From

Chris

Hirata

N A SXA	

		WFIRST DRM1	WFIRST DRM2	Big Telescope
I (C i i i i i i i i i i i i i i i i i i	Implementation	1.3 m unobs 36 H2RG 0.18"/p	1.1 m unobs 14 H4RG 0.18"/p	2.4 m obs 20 H4RG 0.0975"/p
	Imaging Survey* [4 filters for all; depths are 5σ isolated pt src]	$0.92-2.40 \mu m$ 26.0-26.2 mag AB $2800 \text{ deg}^2/\text{yr}$ EE50 = 0.15- 0.21"	$0.92-2.40 \mu m$ 25.8-26.0 mag AB $2900 \text{ deg}^2/\text{yr}$ EE50 = 0.18- 0.25"	$0.92-2.17 \mu m$ 26.9-27.3 mag AB $1080 \text{ deg}^2/\text{yr}$ EE50 = 0.11- 0.14"
	Weak Lensing [reddest 3 filters]	30, 33, 32 gal/ am ²	24, 26, 25 gal/ am ²	79, 82, 72 gal/ am ²
	Redshift Survey [≥7σ Hα detections]	z = 1.28 - 2.66 4900 gal/deg^2 $2900 \text{ deg}^2/\text{yr}$	z = 1.59—2.66 2900 gal/deg2 4400 deg ² /yr	z = 1.13 - 2.20 4900 gal/deg^2 $4000 \text{ deg}^2/\text{yr}$

^{*} The big telescope could in principle support an accelerated imaging mode matching the WFIRST DRM1 survey rate of 2800 deg²/yr. This reaches depth of 25.8—26.0 mag AB and 26/31/32 galaxies per arcmin². This survey is heavily read noise limited (90 s exposures) so may not be the best use of a big telescope.

WL: A completely different regime

- WL with AFTA survey would reach >80 galaxies per square arcminute
 vs ~30 with DRM1/2 and Euclid, and even fewer from the ground
- With a deeper survey AFTA could reach HUDF depths of >300 galaxies per square arcminute

This is a fundamentally different WL regime that is not possible from the ground or with a 1.3 meter class telescope due to PSF size.

- Does not necessarily help with DE FoM (wide>deeper for FoM)
- Much better calibration data
- *Much* better for understanding dark matter

HST-like imaging over 1000s of square degrees

COSMOS: Dark Matter Mapping

CLASH: Cluster Masses and Strong Lensing

Bullet Cluster: Evidence for collisionless CDM

These studies are enabled by high resolution and a high surface density of resolved galaxies. This is not possible with a \sim 1.3 m class mirror.

See also recent z>10 galaxy from CLASH!

Microlensing & Exoplanets

- Euclid unlikely to devote significant time to microlensing for technical and programmatic reasons
- Longer baseline afforded by 2 missions
- Higher resolution of AFTA better for smaller planets
- Better characterization of host stars and higher percentage of detections that allow mass determinations (via proper motion)
- Also for exoplanets- see coronagraph capabilities